iOS-底层原理 17:类的加载(上)

iOS 底层原理 文章汇总

在上一篇iOS-底层原理 16:dyld与objc的关联文章中,我们理解了dyldobjc是如何关联的,本文的主要目的是理解类的相关信息是如何加载内存的,其中重点关注map_imagesload_images

  • map_images:主要是管理文件中和动态库中的所有符号,即class、protocol、selector、category

  • load_images:加载执行load方法

其中代码通过编译,读取到Mach-O可执行文件中,再从Mach-O中读取到内存,如下图所示

dyld与objc的关联 以及数据加载流程

map_images:加载镜像文件到内存

在查看源码之前,首先需要说明为什么map_images&,而load_images没有

  • map_images引用类型,外界变了,跟着变。
  • load_images值类型,不传递值

map_images源码流程

map_images方法的主要作用是将Mach-O中的类信息加载到内存

  • 进入map_images的源码
void
map_images(unsigned count, const char * const paths[],
           const struct mach_header * const mhdrs[])
{
    mutex_locker_t lock(runtimeLock);
    return map_images_nolock(count, paths, mhdrs);
}
  • 进入 map_images_nolock 源码,其关键代码是_read_images
void
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
                  const struct mach_header * const mhdrs[])
{
    //...省略

    // Find all images with Objective-C metadata.查找所有带有Objective-C元数据的映像
    hCount = 0;

    // Count classes. Size various table based on the total.计算类的个数
    int totalClasses = 0;
    int unoptimizedTotalClasses = 0;
    //代码块:作用域,进行局部处理,即局部处理一些事件
    {
        //...省略
    }
    
    //...省略

    if (hCount > 0) {
        //加载镜像文件
        _read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
    }

    firstTime = NO;
    
    // Call image load funcs after everything is set up.一切设置完成后,调用镜像加载功能。
    for (auto func : loadImageFuncs) {
        for (uint32_t i = 0; i < mhCount; i++) {
            func(mhdrs[i]);
        }
    }
}

_read_images 源码实现

_read_images主要是主要是加载类信息,即类、分类、协议等,进入_read_images源码实现,主要分为以下几部分:

  • 1、条件控制进行的一次加载
  • 2、修复预编译阶段的@selector的混乱问题
  • 3、错误混乱的类处理
  • 4、修复重映射一些没有被镜像文件加载进来的类
  • 5、修复一些消息
  • 6、当类里面有协议时:readProtocol 读取协议
  • 7、修复没有被加载的协议
  • 8、分类处理
  • 9、类的加载处理
  • 10、没有被处理的类,优化那些被侵犯的类

1、条件控制进行的一次加载

doneOnce流程中通过NXCreateMapTable 创建表,存放类信息,即创建一张类的哈希表``gdb_objc_realized_classes,其目的是为了类查找方便、快捷

if (!doneOnce) {
     
    //...省略
    
    // namedClasses
    // Preoptimized classes don't go in this table.
    // 4/3 is NXMapTable's load factor
    int namedClassesSize = 
        (isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
//创建表(哈希表key-value),目的是查找快
    gdb_objc_realized_classes =
        NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);

    ts.log("IMAGE TIMES: first time tasks");
}

查看gdb_objc_realized_classes的注释说明,这个哈希表用于存储不在共享缓存且已命名类,无论类是否实现,其容量是类数量的4/3

// This is a misnomer: gdb_objc_realized_classes is actually a list of 
// named classes not in the dyld shared cache, whether realized or not.
//gdb_objc_realized_classes实际上是不在dyld共享缓存中的已命名类的列表,无论是否实现
NXMapTable *gdb_objc_realized_classes;  // exported for debuggers in objc-gdb.h

2、修复预编译阶段的@selector的混乱问题

主要是通过通过_getObjc2SelectorRefs拿到Mach_O中的静态段__objc_selrefs,遍历列表调用sel_registerNameNoLockSEL添加到namedSelectors哈希表中

// Fix up @selector references 修复@selector引用
//sel 不是简单的字符串,而是带地址的字符串
static size_t UnfixedSelectors;
{
    mutex_locker_t lock(selLock);
    for (EACH_HEADER) {
        if (hi->hasPreoptimizedSelectors()) continue;

        bool isBundle = hi->isBundle();
        //通过_getObjc2SelectorRefs拿到Mach-O中的静态段__objc_selrefs
        SEL *sels = _getObjc2SelectorRefs(hi, &count);
        UnfixedSelectors += count;
        for (i = 0; i < count; i++) { //列表遍历
            const char *name = sel_cname(sels[i]);
            //注册sel操作,即将sel添加到
            SEL sel = sel_registerNameNoLock(name, isBundle);
            if (sels[i] != sel) {//当sel与sels[i]地址不一致时,需要调整为一致的
                sels[i] = sel;
            }
        }
    }
}
  • 其中_getObjc2SelectorRefs的源码如下,表示获取Mach-O中的静态段__objc_selrefs,后续通过_getObjc2开头的Mach-O静态段获取,都对应不同的section name
//      function name                 content type     section name
GETSECT(_getObjc2SelectorRefs,        SEL,             "__objc_selrefs"); 
GETSECT(_getObjc2MessageRefs,         message_ref_t,   "__objc_msgrefs"); 
GETSECT(_getObjc2ClassRefs,           Class,           "__objc_classrefs");
GETSECT(_getObjc2SuperRefs,           Class,           "__objc_superrefs");
GETSECT(_getObjc2ClassList,           classref_t const,      "__objc_classlist");
GETSECT(_getObjc2NonlazyClassList,    classref_t const,      "__objc_nlclslist");
GETSECT(_getObjc2CategoryList,        category_t * const,    "__objc_catlist");
GETSECT(_getObjc2CategoryList2,       category_t * const,    "__objc_catlist2");
GETSECT(_getObjc2NonlazyCategoryList, category_t * const,    "__objc_nlcatlist");
GETSECT(_getObjc2ProtocolList,        protocol_t * const,    "__objc_protolist");
GETSECT(_getObjc2ProtocolRefs,        protocol_t *,    "__objc_protorefs");
GETSECT(getLibobjcInitializers,       UnsignedInitializer, "__objc_init_func");
  • sel_registerNameNoLock源码路径如下:sel_registerNameNoLock -> __sel_registerName,如下所示,其关键代码是auto it = namedSelectors.get().insert(name);,即将sel插入namedSelectors哈希表
SEL sel_registerNameNoLock(const char *name, bool copy) {
    return __sel_registerName(name, 0, copy);  // NO lock, maybe copy
}

👇
static SEL __sel_registerName(const char *name, bool shouldLock, bool copy) 
{
    SEL result = 0;

    if (shouldLock) selLock.assertUnlocked();
    else selLock.assertLocked();

    if (!name) return (SEL)0;

    result = search_builtins(name);
    if (result) return result;
    
    conditional_mutex_locker_t lock(selLock, shouldLock);
    auto it = namedSelectors.get().insert(name);//sel插入表
    if (it.second) {
        // No match. Insert.
        *it.first = (const char *)sel_alloc(name, copy);
    }
    return (SEL)*it.first;
}
  • 其中selector --> sel并不是简单的字符串,是带地址的字符串
    如下所示,sels[i]sel字符串一致,但是地址不一致,所以需要调整为一致的。即fix up,可以通过打印调试显示如下
    打印sel

3、错误混乱的类处理

主要是从Mach-O中取出所有类,在遍历进行处理

//3、错误混乱的类处理
// Discover classes. Fix up unresolved future classes. Mark bundle classes.
bool hasDyldRoots = dyld_shared_cache_some_image_overridden();
//读取类:readClass
for (EACH_HEADER) {
    if (! mustReadClasses(hi, hasDyldRoots)) {
        // Image is sufficiently optimized that we need not call readClass()
        continue;
    }
    //从编译后的类列表中取出所有类,即从Mach-O中获取静态段__objc_classlist,是一个classref_t类型的指针
    classref_t const *classlist = _getObjc2ClassList(hi, &count);

    bool headerIsBundle = hi->isBundle();
    bool headerIsPreoptimized = hi->hasPreoptimizedClasses();

    for (i = 0; i < count; i++) {
        Class cls = (Class)classlist[i];//此时获取的cls只是一个地址
        Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized); //读取类,经过这步后,cls获取的值才是一个名字
        //经过调试,并未执行if里面的流程
        //初始化所有懒加载的类需要的内存空间,但是懒加载类的数据现在是没有加载到的,连类都没有初始化
        if (newCls != cls  &&  newCls) {
            // Class was moved but not deleted. Currently this occurs 
            // only when the new class resolved a future class.
            // Non-lazily realize the class below.
            //将懒加载的类添加到数组中
            resolvedFutureClasses = (Class *)
                realloc(resolvedFutureClasses, 
                        (resolvedFutureClassCount+1) * sizeof(Class));
            resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
        }
    }
}
ts.log("IMAGE TIMES: discover classes");
  • 通过代码调试,知道了在未执行readClass方法前,cls只是一个地址

    打印readClass执行前的cls

  • 在执行后,cls是一个类的名称

    打印执行后的cls

所以到这步为止,类的信息目前仅存储了地址+名称

4、修复重映射一些没有被镜像文件加载进来的类

主要是将未映射的ClassSuper Class进行重映射,其中

  • _getObjc2ClassRefs是获取Mach-O中的静态段__objc_classrefs类的引用

  • _getObjc2SuperRefs是获取Mach-O中的静态段__objc_superrefs父类的引用

  • 通过注释可以得知,被remapClassRef的类都是懒加载的类,所以最初经过调试时,这部分代码是没有执行的

//4、修复重映射一些没有被镜像文件加载进来的类
// Fix up remapped classes 修正重新映射的类
// Class list and nonlazy class list remain unremapped.类列表和非惰性类列表保持未映射
// Class refs and super refs are remapped for message dispatching.类引用和超级引用将重新映射以进行消息分发
//经过调试,并未执行if里面的流程
//将未映射的Class 和 Super Class重映射,被remap的类都是懒加载的类
if (!noClassesRemapped()) {
    for (EACH_HEADER) {
        Class *classrefs = _getObjc2ClassRefs(hi, &count);//Mach-O的静态段 __objc_classrefs
        for (i = 0; i < count; i++) {
            remapClassRef(&classrefs[i]);
        }
        // fixme why doesn't test future1 catch the absence of this?
        classrefs = _getObjc2SuperRefs(hi, &count);//Mach_O中的静态段 __objc_superrefs
        for (i = 0; i < count; i++) {
            remapClassRef(&classrefs[i]);
        }
    }
}

ts.log("IMAGE TIMES: remap classes");

5、修复一些消息

主要是通过_getObjc2MessageRefs 获取Mach-O的静态段 __objc_msgrefs,并遍历通过fixupMessageRef将函数指针进行注册,并fix为新的函数指针

#if SUPPORT_FIXUP
//5、修复一些消息
    // Fix up old objc_msgSend_fixup call sites
    for (EACH_HEADER) {
        // _getObjc2MessageRefs 获取Mach-O的静态段 __objc_msgrefs
        message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
        if (count == 0) continue;

        if (PrintVtables) {
            _objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
                         "call sites in %s", count, hi->fname());
        }
        //经过调试,并未执行for里面的流程
        //遍历将函数指针进行注册,并fix为新的函数指针
        for (i = 0; i < count; i++) {
            fixupMessageRef(refs+i);
        }
    }

    ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
#endif

6、当类里面有协议时:readProtocol 读取协议

//6、当类里面有协议时:readProtocol 读取协议
// Discover protocols. Fix up protocol refs. 发现协议。修正协议参考
//遍历所有协议列表,并且将协议列表加载到Protocol的哈希表中
for (EACH_HEADER) {
    extern objc_class OBJC_CLASS_$_Protocol;
    //cls = Protocol类,所有协议和对象的结构体都类似,isa都对应Protocol类
    Class cls = (Class)&OBJC_CLASS_$_Protocol;
    ASSERT(cls);
    //获取protocol哈希表 -- protocol_map
    NXMapTable *protocol_map = protocols();
    bool isPreoptimized = hi->hasPreoptimizedProtocols();

    // Skip reading protocols if this is an image from the shared cache
    // and we support roots
    // Note, after launch we do need to walk the protocol as the protocol
    // in the shared cache is marked with isCanonical() and that may not
    // be true if some non-shared cache binary was chosen as the canonical
    // definition
    if (launchTime && isPreoptimized && cacheSupportsProtocolRoots) {
        if (PrintProtocols) {
            _objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
                         hi->fname());
        }
        continue;
    }

    bool isBundle = hi->isBundle();
    //通过_getObjc2ProtocolList 获取到Mach-O中的静态段__objc_protolist协议列表,
    //即从编译器中读取并初始化protocol
    protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
    for (i = 0; i < count; i++) {
        //通过添加protocol到protocol_map哈希表中
        readProtocol(protolist[i], cls, protocol_map, 
                     isPreoptimized, isBundle);
    }
}

ts.log("IMAGE TIMES: discover protocols");
  • 通过NXMapTable *protocol_map = protocols();创建protocol哈希表,表的名称为protocol_map
/***********************************************************************
* protocols
* Returns the protocol name => protocol map for protocols.
* Locking: runtimeLock must read- or write-locked by the caller
**********************************************************************/
static NXMapTable *protocols(void)
{
    static NXMapTable *protocol_map = nil;
    
    runtimeLock.assertLocked();

    INIT_ONCE_PTR(protocol_map, 
                  NXCreateMapTable(NXStrValueMapPrototype, 16), 
                  NXFreeMapTable(v) );

    return protocol_map;
}
  • 通过_getObjc2ProtocolList 获取到Mach-O中的静态段__objc_protolist协议列表,即从编译器中读取并初始化protocol
protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
  • 循环遍历协议列表,通过readProtocol方法将协议添加到protocol_map哈希表中
readProtocol(protolist[i], cls, protocol_map, 
                         isPreoptimized, isBundle);

7、修复没有被加载的协议

主要是通过 _getObjc2ProtocolRefs 获取到Mach-O的静态段 __objc_protorefs(与6中的__objc_protolist并不是同一个东西),然后遍历需要修复的协议,通过remapProtocolRef比较当前协议和协议列表中的同一个内存地址的协议是否相同,如果不同则替换

//7、修复没有被加载的协议
// Fix up @protocol references
// Preoptimized images may have the right 
// answer already but we don't know for sure.
for (EACH_HEADER) {
    // At launch time, we know preoptimized image refs are pointing at the
    // shared cache definition of a protocol.  We can skip the check on
    // launch, but have to visit @protocol refs for shared cache images
    // loaded later.
    if (launchTime && cacheSupportsProtocolRoots && hi->isPreoptimized())
        continue;
    //_getObjc2ProtocolRefs 获取到Mach-O的静态段 __objc_protorefs
    protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
    for (i = 0; i < count; i++) {//遍历
        //比较当前协议和协议列表中的同一个内存地址的协议是否相同,如果不同则替换
        remapProtocolRef(&protolist[i]);//经过代码调试,并未执行
    }
}

ts.log("IMAGE TIMES: fix up @protocol references");

其中remapProtocolRef的源码实现如下

/***********************************************************************
* remapProtocolRef
* Fix up a protocol ref, in case the protocol referenced has been reallocated.
* Locking: runtimeLock must be read- or write-locked by the caller
**********************************************************************/
static size_t UnfixedProtocolReferences;
static void remapProtocolRef(protocol_t **protoref)
{
    runtimeLock.assertLocked();
    //获取协议列表中统一内存地址的协议
    protocol_t *newproto = remapProtocol((protocol_ref_t)*protoref);
    if (*protoref != newproto) {//如果当前协议 与 同一内存地址协议不同,则替换
        *protoref = newproto;
        UnfixedProtocolReferences++;
    }
}

8、分类处理

主要是处理分类,需要在分类初始化并将数据加载到类后才执行,对于运行时出现的分类,将分类的发现推迟推迟到对_dyld_objc_notify_register的调用完成后的第一个load_images调用为止

//8、分类处理
// Discover categories. Only do this after the initial category 发现分类
// attachment has been done. For categories present at startup,
// discovery is deferred until the first load_images call after
// the call to _dyld_objc_notify_register completes. rdar://problem/53119145
if (didInitialAttachCategories) {
    for (EACH_HEADER) {
        load_categories_nolock(hi);
    }
}

ts.log("IMAGE TIMES: discover categories");

9、类的加载处理

主要是实现类的加载处理,实现非懒加载类

  • 通过_getObjc2NonlazyClassList获取Mach-O的静态段__objc_nlclslist非懒加载类表

  • 通过addClassTableEntry将非懒加载类插入类表,存储到内存,如果已经添加就不会载添加,需要确保整个结构都被添加

  • 通过realizeClassWithoutSwift实现当前的类,因为前面3中的readClass读取到内存的仅仅只有地址+名称,类的data数据并没有加载出来

// Realize non-lazy classes (for +load methods and static instances) 初始化非懒加载类,进行rw、ro等操作:realizeClassWithoutSwift
    //懒加载类 -- 别人不动我,我就不动
    //实现非懒加载的类,对于load方法和静态实例变量
    for (EACH_HEADER) {
        //通过_getObjc2NonlazyClassList获取Mach-O的静态段__objc_nlclslist非懒加载类表
        classref_t const *classlist = 
            _getObjc2NonlazyClassList(hi, &count);
        for (i = 0; i < count; i++) {
            Class cls = remapClass(classlist[i]);
            
            const char *mangledName  = cls->mangledName();
             const char *LGPersonName = "LGPerson";
            
             if (strcmp(mangledName, LGPersonName) == 0) {
                 auto kc_ro = (const class_ro_t *)cls->data();
                 printf("_getObjc2NonlazyClassList: 这个是我要研究的 %s \n",LGPersonName);
             }
            
            if (!cls) continue;

            addClassTableEntry(cls);//插入表,但是前面已经插入过了,所以不会重新插入

            if (cls->isSwiftStable()) {
                if (cls->swiftMetadataInitializer()) {
                    _objc_fatal("Swift class %s with a metadata initializer "
                                "is not allowed to be non-lazy",
                                cls->nameForLogging());
                }
                // fixme also disallow relocatable classes
                // We can't disallow all Swift classes because of
                // classes like Swift.__EmptyArrayStorage
            }
            //实现当前的类,因为前面readClass读取到内存的仅仅只有地址+名称,类的data数据并没有加载出来
            //实现所有非懒加载的类(实例化类对象的一些信息,例如rw)
            realizeClassWithoutSwift(cls, nil);
        }
    }

    ts.log("IMAGE TIMES: realize non-lazy classes");

10、没有被处理的类,优化那些被侵犯的类

主要是实现没有被处理的类,优化被侵犯的类

// Realize newly-resolved future classes, in case CF manipulates them
    if (resolvedFutureClasses) {
        for (i = 0; i < resolvedFutureClassCount; i++) {
            Class cls = resolvedFutureClasses[i];
            if (cls->isSwiftStable()) {
                _objc_fatal("Swift class is not allowed to be future");
            }
            //实现类
            realizeClassWithoutSwift(cls, nil);
            cls->setInstancesRequireRawIsaRecursively(false/*inherited*/);
        }
        free(resolvedFutureClasses);
    }

    ts.log("IMAGE TIMES: realize future classes");

    if (DebugNonFragileIvars) {
        //实现所有类
        realizeAllClasses();
    }

我们需要重点关注的是3中的readClass以及9中realizeClassWithoutSwift两个方法

readClass:读取类

readClass主要是读取类,在未调用该方法前,cls只是一个地址,执行该方法后,cls类的名称,其源码实现如下,关键代码是addNamedClassaddClassTableEntry,源码实现如下

/***********************************************************************
* readClass
* Read a class and metaclass as written by a compiler. 读取编译器编写的类和元类
* Returns the new class pointer. This could be:  返回新的类指针,可能是:
* - cls
* - nil  (cls has a missing weak-linked superclass)
* - something else (space for this class was reserved by a future class)
*
* Note that all work performed by this function is preflighted by 
* mustReadClasses(). Do not change this function without updating that one.
*
* Locking: runtimeLock acquired by map_images or objc_readClassPair
**********************************************************************/
Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
{
    const char *mangledName = cls->mangledName();//名字
    
    // **CJL写的** ----如果想进入自定义,自己加一个判断
    const char *LGPersonName = "LGPerson";
    if (strcmp(mangledName, LGPersonName) == 0) {
        auto kc_ro = (const class_ro_t *)cls->data();
        printf("%s -- 研究重点--%s\n", __func__,mangledName);
    }
    //当前类的父类中若有丢失的weak-linked类,则返回nil
    if (missingWeakSuperclass(cls)) {
        // No superclass (probably weak-linked). 
        // Disavow any knowledge of this subclass.
        if (PrintConnecting) {
            _objc_inform("CLASS: IGNORING class '%s' with "
                         "missing weak-linked superclass", 
                         cls->nameForLogging());
        }
        addRemappedClass(cls, nil);
        cls->superclass = nil;
        return nil;
    }
    
    cls->fixupBackwardDeployingStableSwift();
//判断是不是后期要处理的类
    //正常情况下,不会走到popFutureNamedClass,因为这是专门针对未来待处理的类的操作
    //通过断点调试,不会走到if流程里面,因此也不会对ro、rw进行操作
    Class replacing = nil;
    if (Class newCls = popFutureNamedClass(mangledName)) {
        // This name was previously allocated as a future class.
        // Copy objc_class to future class's struct.
        // Preserve future's rw data block.
        
        if (newCls->isAnySwift()) {
            _objc_fatal("Can't complete future class request for '%s' "
                        "because the real class is too big.", 
                        cls->nameForLogging());
        }
        //读取class的data,设置ro、rw
        //经过调试,并不会走到这里
        class_rw_t *rw = newCls->data();
        const class_ro_t *old_ro = rw->ro();
        memcpy(newCls, cls, sizeof(objc_class));
        rw->set_ro((class_ro_t *)newCls->data());
        newCls->setData(rw);
        freeIfMutable((char *)old_ro->name);
        free((void *)old_ro);
        
        addRemappedClass(cls, newCls);
        
        replacing = cls;
        cls = newCls;
    }
    //判断是否类是否已经加载到内存
    if (headerIsPreoptimized  &&  !replacing) {
        // class list built in shared cache
        // fixme strict assert doesn't work because of duplicates
        // ASSERT(cls == getClass(name));
        ASSERT(getClassExceptSomeSwift(mangledName));
    } else {
        addNamedClass(cls, mangledName, replacing);//加载共享缓存中的类
        addClassTableEntry(cls);//插入表,即相当于从mach-O文件 读取到 内存 中
    }

    // for future reference: shared cache never contains MH_BUNDLEs
    if (headerIsBundle) {
        cls->data()->flags |= RO_FROM_BUNDLE;
        cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
    }
    
    return cls;
}

通过源码实现,主要分为以下几步:

  • 通过mangledName获取类的名字,其中mangledName方法的源码实现如下
const char *mangledName() { 
        // fixme can't assert locks here
        ASSERT(this);

        if (isRealized()  ||  isFuture()) { //这个初始化判断在lookupImp也有类似的
            return data()->ro()->name;//如果已经实例化,则从ro中获取name
        } else {
            return ((const class_ro_t *)data())->name;//反之,从mach-O的数据data中获取name
        }
    }
  • 当前类的父类中若有丢失的weak-linked类,则返回nil

  • 判断是不是后期需要处理的类,在正常情况下,不会走到popFutureNamedClass,因为这是专门针对未来待处理的类的操作,也可以通过断点调试,可知不会走到if流程里面,因此也不会对ro、rw进行操作

    • datamach-O的数据,并不在class的内存

    • ro赋值是从mach-O中的data强转赋值

    • rw里的ro是从ro复制过去

  • 通过addNamedClass将当前类添加到已经创建好的gdb_objc_realized_classes哈希表,该表用于存放所有类

/***********************************************************************
* addNamedClass 加载共享缓存中的类 插入表
* Adds name => cls to the named non-meta class map. 将name=> cls添加到命名的非元类映射
* Warns about duplicate class names and keeps the old mapping.
* Locking: runtimeLock must be held by the caller
**********************************************************************/
static void addNamedClass(Class cls, const char *name, Class replacing = nil)
{
    runtimeLock.assertLocked();
    Class old;
    if ((old = getClassExceptSomeSwift(name))  &&  old != replacing) {
        inform_duplicate(name, old, cls);

        // getMaybeUnrealizedNonMetaClass uses name lookups.
        // Classes not found by name lookup must be in the
        // secondary meta->nonmeta table.
        addNonMetaClass(cls);
    } else {
        //添加到gdb_objc_realized_classes哈希表
        NXMapInsert(gdb_objc_realized_classes, name, cls);
    }
    ASSERT(!(cls->data()->flags & RO_META));

    // wrong: constructed classes are already realized when they get here
    // ASSERT(!cls->isRealized());
}
  • 通过addClassTableEntry,将初始化的类添加到allocatedClasses表,这个表在iOS-底层原理 16:dyld与objc的关联文章中提及过,是在_objc_init中的runtime_init就创建了allocatedClasses
/***********************************************************************
* addClassTableEntry 将一个类添加到所有类的表中
* Add a class to the table of all classes. If addMeta is true,
* automatically adds the metaclass of the class as well.
* Locking: runtimeLock must be held by the caller.
**********************************************************************/
static void
addClassTableEntry(Class cls, bool addMeta = true)
{
    runtimeLock.assertLocked();

    // This class is allowed to be a known class via the shared cache or via
    // data segments, but it is not allowed to be in the dynamic table already.
    auto &set = objc::allocatedClasses.get();//开辟的类的表,在objc_init中的runtime_init就创建了表

    ASSERT(set.find(cls) == set.end());

    if (!isKnownClass(cls))
        set.insert(cls);
    if (addMeta)
        //添加到allocatedClasses哈希表
        addClassTableEntry(cls->ISA(), false);
}

如果我们想在readClass源码中想定位到自定义的类,可以自定义加if判断

readClass中增加自定义判断

总结

所以综上所述,readClass的主要作用就是将Mach-O中的类读取到内存,即插入表中,但是目前的类仅有两个信息:地址以及名称,而mach-O的其中的data数据还未读取出来

realizeClassWithoutSwift:实现类

realizeClassWithoutSwift方法中有ro、rw的相关操作,这个方法在消息流程的慢速查找中有所提及,方法路径为:慢速查找(lookUpImpOrForward) -- realizeClassMaybeSwiftAndLeaveLocked -- realizeClassMaybeSwiftMaybeRelock -- realizeClassWithoutSwift(实现类)

realizeClassWithoutSwift方法主要作用是实现类,将类的data数据加载到内存中,主要有以下几部分操作:

  • 【第一步】读取data数据,并设置ro、rw
  • 【第二步】递归调用realizeClassWithoutSwift完善继承链
  • 【第三步】通过methodizeClass方法化类

第一步:读取data数据

读取classdata数据,并将其强转为ro,以及rw初始化ro拷贝一份到rw中的ro

  • ro 表示 readOnly,即只读,其在编译时就已经确定了内存,包含类名称、方法、协议和实例变量的信息,由于是只读的,所以属于Clean Memory,而Clean Memory是指加载后不会发生更改的内存

  • rw 表示 readWrite,即可读可写,由于其动态性,可能会往类中添加属性、方法、添加协议,在最新的2020的WWDC的对内存优化的说明Advancements in the Objective-C runtime - WWDC 2020 - Videos - Apple Developer中,提到rw,其实在rw中只有10%的类真正的更改了它们的方法,所以有了rwe,即类的额外信息。对于那些确实需要额外信息的类,可以分配rwe扩展记录中的一个,并将其滑入类中供其使用。其中rw就属于dirty memory,而 dirty memory是指在进程运行时会发生更改的内存类结构一经使用就会变成 ditry memory,因为运行时会向它写入新数据,例如 创建一个新的方法缓存,并从类中指向它

// fixme verify class is not in an un-dlopened part of the shared cache?
//读取class的data(),以及ro/rw创建
auto ro = (const class_ro_t *)cls->data(); //读取类结构的bits属性、//ro -- clean memory,在编译时就已经确定了内存
auto isMeta = ro->flags & RO_META; //判断元类
if (ro->flags & RO_FUTURE) {
    // This was a future class. rw data is already allocated.
    rw = cls->data(); //dirty memory 进行赋值
    ro = cls->data()->ro();
    ASSERT(!isMeta);
    cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else { //此时将数据读取进来了,也赋值完毕了
    // Normal class. Allocate writeable class data.
    rw = objc::zalloc<class_rw_t>(); //申请开辟zalloc -- rw
    rw->set_ro(ro);//rw中的ro设置为临时变量ro
    rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
    cls->setData(rw);//将cls的data赋值为rw形式
}

【第二步】递归调用 realizeClassWithoutSwift 完善 继承链

递归调用realizeClassWithoutSwift完善继承链,并设置当前类、父类、元类的rw

  • 递归调用 realizeClassWithoutSwift设置父类、元类

  • 设置父类和元类的isa指向

  • 通过addSubclass 和 addRootClass设置父子的双向链表指向关系,即父类中可以找到子类,子类中可以找到父类

 // Realize superclass and metaclass, if they aren't already.
    // This needs to be done after RW_REALIZED is set above, for root classes.
    // This needs to be done after class index is chosen, for root metaclasses.
    // This assumes that none of those classes have Swift contents,
    //   or that Swift's initializers have already been called.
    //   fixme that assumption will be wrong if we add support
    //   for ObjC subclasses of Swift classes. --
    //递归调用realizeClassWithoutSwift完善继承链,并处理当前类的父类、元类
    //递归实现 设置当前类、父类、元类的 rw,主要目的是确定继承链 (类继承链、元类继承链)
    //实现元类、父类
    //当isa找到根元类之后,根元类的isa是指向自己的,不会返回nil从而导致死循环——remapClass中对类在表中进行查找的操作,如果表中已有该类,则返回一个空值;如果没有则返回当前类,这样保证了类只加载一次并结束递归
    supercls = realizeClassWithoutSwift(remapClass(cls->superclass), nil);
    metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
    
...

// Update superclass and metaclass in case of remapping -- class 是 双向链表结构 即父子关系都确认了
// 将父类和元类给我们的类 分别是isa和父类的对应值
cls->superclass = supercls;
cls->initClassIsa(metacls);

...

// Connect this class to its superclass's subclass lists
//双向链表指向关系 父类中可以找到子类 子类中也可以找到父类
//通过addSubclass把当前类放到父类的子类列表中去
if (supercls) {
    addSubclass(supercls, cls);
} else {
    addRootClass(cls);
}

这里有一个问题,realizeClassWithoutSwift递归调用时,isa找到根元类之后,根元类的isa是指向自己,并不会返回nil,所以有以下递归终止条件,其目的是保证类只加载一次

  • realizeClassWithoutSwift
    • 如果类不存在,则返回nil

    • 如果类已经实现,则直接返回cls

static Class realizeClassWithoutSwift(Class cls, Class previously)
{
    runtimeLock.assertLocked();
    
    //如果类不存在,则返回nil
    if (!cls) return nil;
    如果类已经实现,则直接返回cls
    if (cls->isRealized()) return cls;
    ASSERT(cls == remapClass(cls));
    
    ...
}
  • remapClass方法中,如果cls不存在,则直接返回nil
/***********************************************************************
* remapClass
* Returns the live class pointer for cls, which may be pointing to 
* a class struct that has been reallocated.
* Returns nil if cls is ignored because of weak linking.
* Locking: runtimeLock must be read- or write-locked by the caller
**********************************************************************/
static Class remapClass(Class cls)
{
    runtimeLock.assertLocked();

    if (!cls) return nil;//如果cls不存在,则返回nil

    auto *map = remappedClasses(NO);
    if (!map)
        return cls;
    
    auto iterator = map->find(cls);
    if (iterator == map->end())
        return cls;
    return std::get<1>(*iterator);
}

【第三步】通过 methodizeClass 方法化类

通过methodizeClass方法,从ro中读取方法列表(包括分类中的方法)、属性列表、协议列表赋值给rw,并返回cls

// Attach categories 附加类别 -- 疑问:ro中也有方法列表 rw中也有方法列表,下面这个方法可以说明
//将ro数据写入到rw
methodizeClass(cls, previously);

return cls;

断点调试 realizeClassWithoutSwift

如果我们需要跟踪自定义类,同样需要_read_images方法中的第九步的realizeClassWithoutSwift调用前,以及realizeClassWithoutSwift方法中增加自定义逻辑,主要是为了方便调试自定义类

  • _read_images方法中的第九步的realizeClassWithoutSwift调用前增加自定义逻辑

    _read_images第九步增加自定义逻辑

  • realizeClassWithoutSwift方法中增加自定义逻辑

    realizeClassWithoutSwift源码增加自定义逻辑

下面,开启我们的断点调试

  • LGPerson中重写+load函数

    调试 realizeClassWithoutSwift-1

  • 重新运行程序,我们就走到了 _read_images第九步中的自定义逻辑部分

    调试 realizeClassWithoutSwift-2

  • realizeClassWithoutSwift调用部分加断点,运行并断住

    调试 realizeClassWithoutSwift-3

  • 继续运行程序,断点来到realizeClassWithoutSwift方法自定义判断的代码中

    调试 realizeClassWithoutSwift-4

  • 继续在auto ro =加断点,继续运行,断住 -- 这部分主要是读取data

    调试 realizeClassWithoutSwift-5

    查看ro,其中auto isMeta = ro->flags & RO_META; //判断元类
    调试 realizeClassWithoutSwift-6

  • 在else里面的rw->set_ro(ro);处加断点,断住,查看rw,此时的rw0x0,查看rw,其中包括rorwe

    调试 realizeClassWithoutSwift-7

    • x/4gx cls 其中红框部分为0
      调试 realizeClassWithoutSwift-8
  • 继续运行,然后查看x/4gx cls,此时还是为0x0

    调试 realizeClassWithoutSwift-9

    这里我们需要去查看set_ro的源码实现,其路径为:set_ro -- set_ro_or_rwe(找到 get_ro_or_rwe,是通过ro_or_rw_ext_t类型从ro_or_rw_ext中获取) -- ro_or_rw_ext_t中的ro
    调试 realizeClassWithoutSwift-10

    通过源码可知ro获取主要分两种情况:有没有运行时

    • 如果有运行时,从rw中读取
    • 反之,如果没有运行时,从ro中读取
  • if (supercls && !isMeta)处加断点,继续运行断住,此时断点的cls是地址,猜测cls可能是元类

    调试 realizeClassWithoutSwift-11

    下面来进行验证:通过clsisa指针地址来验证,是同一个地址,这个是存在一个递归(在supercls = 、metacls =部分递归)
    调试 realizeClassWithoutSwift-12

methodizeClass:方法化类

其中methodizeClass的源码实现如下,主要分为几部分:

  • 属性列表、方法列表、协议列表等贴到rwe

  • 附加分类中的方法(将在下一篇文章中进行解释说明)

static void methodizeClass(Class cls, Class previously)
{
    runtimeLock.assertLocked();

    bool isMeta = cls->isMetaClass();
    auto rw = cls->data(); // 初始化一个rw
    auto ro = rw->ro();
    auto rwe = rw->ext();
    
    ...

    // Install methods and properties that the class implements itself.
    //将属性列表、方法列表、协议列表等贴到rw中
    // 将ro中的方法列表加入到rw中
    method_list_t *list = ro->baseMethods();//获取ro的baseMethods
    if (list) {
        prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));//methods进行排序
        if (rwe) rwe->methods.attachLists(&list, 1);//对rwe进行处理
    }
    // 加入属性
    property_list_t *proplist = ro->baseProperties;
    if (rwe && proplist) {
        rwe->properties.attachLists(&proplist, 1);
    }
    // 加入协议
    protocol_list_t *protolist = ro->baseProtocols;
    if (rwe && protolist) {
        rwe->protocols.attachLists(&protolist, 1);
    }

    // Root classes get bonus method implementations if they don't have 
    // them already. These apply before category replacements.
    if (cls->isRootMetaclass()) {
        // root metaclass
        addMethod(cls, @selector(initialize), (IMP)&objc_noop_imp, "", NO);
    }

    // Attach categories.
    // 加入分类中的方法
    if (previously) {
        if (isMeta) {
            objc::unattachedCategories.attachToClass(cls, previously,
                                                     ATTACH_METACLASS);
        } else {
            // When a class relocates, categories with class methods
            // may be registered on the class itself rather than on
            // the metaclass. Tell attachToClass to look for those.
            objc::unattachedCategories.attachToClass(cls, previously,
                                                     ATTACH_CLASS_AND_METACLASS);
        }
    }
    objc::unattachedCategories.attachToClass(cls, cls,
                                             isMeta ? ATTACH_METACLASS : ATTACH_CLASS);

    ....
}

rwe的逻辑

方法列表加入rwe的逻辑如下:

  • 获取robaseMethods

  • 通过prepareMethodLists方法排序

  • rwe进行处理即通过attachLists插入

方法如何排序

在消息流程的慢速查找流程iOS-底层原理 13:消息流程分析之慢速查找文章中,方法的查找算法是通过二分查找算法,说明sel-imp是有排序的,那么是如何排序的呢?

  • 进入prepareMethodLists的源码实现,其内部是通过fixupMethodList方法排序
static void 
prepareMethodLists(Class cls, method_list_t **addedLists, int addedCount,
                   bool baseMethods, bool methodsFromBundle)
{
    ...

    // Add method lists to array.
    // Reallocate un-fixed method lists.
    // The new methods are PREPENDED to the method list array.

    for (int i = 0; i < addedCount; i++) {
        method_list_t *mlist = addedLists[i];
        ASSERT(mlist);

        // Fixup selectors if necessary
        if (!mlist->isFixedUp()) {
            fixupMethodList(mlist, methodsFromBundle, true/*sort*/);//排序
        }
    }
    
    ...
}
  • 进入fixupMethodList源码实现,是根据selector address排序
static void 
fixupMethodList(method_list_t *mlist, bool bundleCopy, bool sort)
{
    runtimeLock.assertLocked();
    ASSERT(!mlist->isFixedUp());

    // fixme lock less in attachMethodLists ?
    // dyld3 may have already uniqued, but not sorted, the list
    if (!mlist->isUniqued()) {
        mutex_locker_t lock(selLock);
    
        // Unique selectors in list.
        for (auto& meth : *mlist) {
            const char *name = sel_cname(meth.name);
            meth.name = sel_registerNameNoLock(name, bundleCopy);
        }
    }

    // Sort by selector address.根据sel地址排序
    if (sort) {
        method_t::SortBySELAddress sorter;
        std::stable_sort(mlist->begin(), mlist->end(), sorter);
    }
    
    // Mark method list as uniqued and sorted
    mlist->setFixedUp();
}

验证方法排序

下面我们可以通过调试来验证方法的排序

  • methodizeClass方法中添加自定义逻辑,并断住

    验证方法排序-1

  • 读取 ro中的 methodlist

    • p kc_ro
    • p $0->baseMethodList(通过 auto kc_ro = kc_rw->ro(); -- ro() -- class_ro_t类型查看属性)
    • p *$1
      验证方法排序-2
    • p $2.get(0)
    • p $2.get(1)
    • p $2.get(2)
    • p $2.get(3) ...


      验证方法排序-3
  • 进入prepareMethodLists方法,将ro中的baseMethods进行排序

    验证方法排序-4

  • 进入prepareMethodLists 源码,加自定义断点(主要是为了针对性研究),执行断点,运行到自定义逻辑并断住(这里加 kc_isMeta,主要是用于过滤掉同名的元类中的methods

    验证方法排序-5

  • 一步步执行,来到fixupMethodList,即对sel 排序

    验证方法排序-6

  • 进入fixupMethodList源码实现,(sel 根据selAdress 排序) ,再次断点,来到下图部分,即方法经过了一层排序

    验证方法排序-7

    • p mlist
    • p *$7
    • p 8.get(0)、p8.get(1)、p 8.get(2)、p8.get(3)
      验证方法排序-8

所以 排序前后的methodlist对比如下,所以总结如下:methodizeClass方法中实现类中方法(协议等)的序列化

排序前后对比

attachToClass方法

methodlist方法主要是将分类添加到主类中,其源码实现如下

void attachToClass(Class cls, Class previously, int flags)
{
    runtimeLock.assertLocked();
    ASSERT((flags & ATTACH_CLASS) ||
           (flags & ATTACH_METACLASS) ||
           (flags & ATTACH_CLASS_AND_METACLASS));

    
    const char *mangledName  = cls->mangledName();
    const char *LGPersonName = "LGPerson";

    if (strcmp(mangledName, LGPersonName) == 0) {
        bool kc_isMeta = cls->isMetaClass();
        auto kc_rw = cls->data();
        auto kc_ro = kc_rw->ro();
        if (!kc_isMeta) {
            printf("%s: 这个是我要研究的 %s \n",__func__,LGPersonName);
        }
    }
    
    
    auto &map = get();
    auto it = map.find(previously);//找到一个分类进来一次,即一个个加载分类,不要混乱

    if (it != map.end()) {//这里会走进来:当主类没有实现load,分类开始加载,迫使主类加载,会走到if流程里面
        category_list &list = it->second;
        if (flags & ATTACH_CLASS_AND_METACLASS) {//判断是否是元类
            int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
            attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);//实例方法
            attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);//类方法
        } else {
            //如果不是元类,则只走一次 attachCategories
            attachCategories(cls, list.array(), list.count(), flags);
        }
        map.erase(it);
    }
}

因为attachToClass中的外部循环是找到一个分类就会进到attachCategories一次,即找一个就循环一次

attachCategories方法

attachCategories 方法中准备分类的数据,其源码实现如下

static void
attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
                 int flags)
{
    if (slowpath(PrintReplacedMethods)) {
        printReplacements(cls, cats_list, cats_count);
    }
    if (slowpath(PrintConnecting)) {
        _objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
                     cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
                     cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
    }

    /*
     * Only a few classes have more than 64 categories during launch.
     * This uses a little stack, and avoids malloc.
     *
     * Categories must be added in the proper order, which is back
     * to front. To do that with the chunking, we iterate cats_list
     * from front to back, build up the local buffers backwards,
     * and call attachLists on the chunks. attachLists prepends the
     * lists, so the final result is in the expected order.
     */
    constexpr uint32_t ATTACH_BUFSIZ = 64;
    method_list_t   *mlists[ATTACH_BUFSIZ];
    property_list_t *proplists[ATTACH_BUFSIZ];
    protocol_list_t *protolists[ATTACH_BUFSIZ];

    uint32_t mcount = 0;
    uint32_t propcount = 0;
    uint32_t protocount = 0;
    bool fromBundle = NO;
    bool isMeta = (flags & ATTACH_METACLASS);
    /*
     rwe的创建,
     那么为什么要在这里进行`rwe的初始化`?因为我们现在要做一件事:往`本类`中`添加属性、方法、协议`等
     */
    auto rwe = cls->data()->extAllocIfNeeded();
        
    //mlists 是一个二维数组
    for (uint32_t i = 0; i < cats_count; i++) {
        auto& entry = cats_list[i];

        method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
        if (mlist) {
            if (mcount == ATTACH_BUFSIZ) {//mcount = 0,ATTACH_BUFSIZ= 64,不会走到if里面的流程
                prepareMethodLists(cls, mlists, mcount, NO, fromBundle);//准备排序
                rwe->methods.attachLists(mlists, mcount);
                mcount = 0;
            }
            mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
            fromBundle |= entry.hi->isBundle();
        }

        property_list_t *proplist =
            entry.cat->propertiesForMeta(isMeta, entry.hi);
        if (proplist) {
            if (propcount == ATTACH_BUFSIZ) {
                rwe->properties.attachLists(proplists, propcount);
                propcount = 0;
            }
            proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
        }

        protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
        if (protolist) {
            if (protocount == ATTACH_BUFSIZ) {
                rwe->protocols.attachLists(protolists, protocount);
                protocount = 0;
            }
            protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
        }
    }

    if (mcount > 0) {
        prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount, NO, fromBundle);//排序
        rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);//mlists + ATTACH_BUFSIZ - mcount 为内存平移
        if (flags & ATTACH_EXISTING) flushCaches(cls);
    }

    rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);

    rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
  • auto rwe = cls->data()->extAllocIfNeeded();是进行rwe的创建,那么为什么要在这里进行rwe的初始化??因为我们现在要做一件事:往本类添加属性、方法、协议等,即对原来的 clean memory要进行处理了
    • 进入extAllocIfNeeded方法的源码实现,判断rwe是否存在,如果存在则直接获取,如果不存在则开辟

    • 进入extAlloc源码实现,即对rwe 0-1的过程,在此过程中,就将本类的data数据加载进去了

class_rw_ext_t *extAllocIfNeeded() {
    auto v = get_ro_or_rwe();
    if (fastpath(v.is<class_rw_ext_t *>())) { //判断rwe是否存在
        return v.get<class_rw_ext_t *>();//如果存在,则直接获取
    } else {
        return extAlloc(v.get<const class_ro_t *>());//如果不存在则进行开辟
    }
}

👇//extAlloc源码实现
class_rw_ext_t *
class_rw_t::extAlloc(const class_ro_t *ro, bool deepCopy)
{
    runtimeLock.assertLocked();
    //此时只有rw,需要对rwe进行数据添加,即0-1的过程
    auto rwe = objc::zalloc<class_rw_ext_t>();//创建
    
    rwe->version = (ro->flags & RO_META) ? 7 : 0;

    method_list_t *list = ro->baseMethods();
    if (list) {
        if (deepCopy) list = list->duplicate();
        rwe->methods.attachLists(&list, 1);
    }

    // See comments in objc_duplicateClass
    // property lists and protocol lists historically
    // have not been deep-copied
    //
    // This is probably wrong and ought to be fixed some day
    property_list_t *proplist = ro->baseProperties;
    if (proplist) {
        rwe->properties.attachLists(&proplist, 1);
    }

    protocol_list_t *protolist = ro->baseProtocols;
    if (protolist) {
        rwe->protocols.attachLists(&protolist, 1);
    }

    set_ro_or_rwe(rwe, ro);
    return rwe;
}
  • 其中关键代码是rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);即存入mlists的末尾,mlists的数据来源前面的for循环

  • 在调试运行时,发现category_t中的name编译时是LGPerson(参考clang编译时的那么),运行时是LGA即分类的名字

  • 代码mlists[ATTACH_BUFSIZ - ++mcount] = mlist;,经过调试发现此时的mcount等于1,即可以理解为 倒序插入,64的原因是允许容纳64个(最多64个分类)

总结:本类 中 需要添加属性、方法等,所以需要初始化rwe,rwe的初始化主要涉及:分类、addMethod、addProperty、addprotocol , 即对原始类进行修改或者处理时,才会进行rwe的初始化

attachLists方法:插入

  • 其中方法、属性继承于entsize_list_tt协议则是类似entsize_list_tt实现,都是二维数组
struct method_list_t : entsize_list_tt<method_t, method_list_t, 0x3> 

struct property_list_t : entsize_list_tt<property_t, property_list_t, 0> 

struct protocol_list_t {
    // count is pointer-sized by accident.
    uintptr_t count;
    protocol_ref_t list[0]; // variable-size

    size_t byteSize() const {
        return sizeof(*this) + count*sizeof(list[0]);
    }

    protocol_list_t *duplicate() const {
        return (protocol_list_t *)memdup(this, this->byteSize());
    }
    ...
}
  • 进入attachLists方法的源码实现
void attachLists(List* const * addedLists, uint32_t addedCount) {
    if (addedCount == 0) return;

    if (hasArray()) {
        // many lists -> many lists
        //计算数组中旧lists的大小
        uint32_t oldCount = array()->count;
        //计算新的容量大小 = 旧数据大小+新数据大小
        uint32_t newCount = oldCount + addedCount;
        //根据新的容量大小,开辟一个数组,类型是 array_t,通过array()获取
        setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
        //设置数组大小
        array()->count = newCount;
        //旧的数据从 addedCount 数组下标开始 存放旧的lists,大小为 旧数据大小 * 单个旧list大小
        memmove(array()->lists + addedCount, array()->lists, 
                oldCount * sizeof(array()->lists[0]));
        //新数据从数组 首位置开始存储,存放新的lists,大小为 新数据大小 * 单个list大小
        memcpy(
               array()->lists, addedLists, 
               addedCount * sizeof(array()->lists[0]));
    }
    else if (!list  &&  addedCount == 1) {
        // 0 lists -> 1 list
        list = addedLists[0];//将list加入mlists的第一个元素,此时的list是一个一维数组
    } 
    else {
        // 1 list -> many lists 有了一个list,有往里加很多list
        //新的list就是分类,来自LRU的算法思维,即最近最少使用
        //获取旧的list
        List* oldList = list;
        uint32_t oldCount = oldList ? 1 : 0;
        //计算容量和 = 旧list个数+新lists的个数
        uint32_t newCount = oldCount + addedCount;
        //开辟一个容量和大小的集合,类型是 array_t,即创建一个数组,放到array中,通过array()获取
        setArray((array_t *)malloc(array_t::byteSize(newCount)));
        //设置数组的大小
        array()->count = newCount;
        //判断old是否存在,old肯定是存在的,将旧的list放入到数组的末尾
        if (oldList) array()->lists[addedCount] = oldList;
        // memcpy(开始位置,放什么,放多大) 是内存平移,从数组起始位置存入新的list
        //其中array()->lists 表示首位元素位置
        memcpy(array()->lists, addedLists, 
               addedCount * sizeof(array()->lists[0]));
    }
}

从源码可以得知,插入表主要分为三种情况:

  • 【情况1:多对多】如果当前调用attachListslist_array_tt二维数组中有多个一维数组

    • 计算数组中旧lists的大小

    • 计算新的容量大小 = 旧数据大小+新数据大小

    • 根据新的容量大小,开辟一个数组,类型是 array_t,通过array()获取

    • 设置数组大小

    • 旧的数据从 addedCount 数组下标开始 存放旧的lists,大小为 旧数据大小 * 单个旧list大小,即整段平移,可以简单理解为原来的数据移动到后面,即指针偏移

    • 新数据从数组 首位置开始存储,存放新的lists,大小为 新数据大小 * 单个list大小,可以简单理解为越晚加进来,越在前面,越在前面,调用时则优先调用

  • 【情况2:0对一】如果调用attachListslist_array_tt二维数组为空且新增大小数目为 1

    • 直接赋值addedList第一个list
  • 【情况3:一对多】如果当前调用attachListslist_array_tt二维数组只有一个一维数组

    • 获取旧的list

    • 计算容量和 = 旧list个数+新lists的个数

    • 开辟一个容量和大小的集合,类型是 array_t,即创建一个数组,放到array中,通过array()获取

    • 设置数组的大小

    • 判断old是否存在,old肯定是存在的,将旧的list放入到数组的末尾

    • memcpy(开始位置,放什么,放多大)内存平移,从数组起始位置开始存入新的list,其中array()->lists 表示首位元素位置

针对情况3,这里的lists是指分类

  • 这是日常开发中,为什么子类实现父类方法会把父类方法覆盖的原因

  • 同理,对于同名方法,分类方法覆盖类方法的原因

  • 这个操作来自一个算法思维 LRU即最近最少使用加这个newlist的目的是由于要使用这个newlist中的方法,这个newlist对于用户的价值要高,即优先调用

  • 会来到1对多的原因 ,主要是有分类的添加,即旧的元素在后面,新的元素在前面 ,究其根本原因主要是优先调用category,这也是分类的意义所在

memmove和memcpy的区别

  • 在不知道需要平移的内存大小时,需要memmove进行内存平移保证安全

  • memcpy从原内存地址的起始位置开始拷贝若干个字节到目标内存地址中,速度快

rwe 数据加载

rwe -- 本类的数据加载【重点!!!】

下面通过调试来验证rwe数据0-1的过程,即添加类的方法列表

  • attachCategories -> extAllocIfNeeded -> extAlloc增加自定义逻辑,运行,并断住,从堆栈信息可以看出是从attachCategories方法中auto rwe = cls->data()->extAllocIfNeeded();过来的,这里的作用是 开辟rwe

    • 那么为什么要在这里进行rwe的初始化?因为我们现在要做一件事:往本类添加属性、方法、协议等,即对原来的 clean memory要进行处理了
    • rwe是在分类处理时才会进行处理,即rwe初始化,且有以下几个方法会涉及rwe的初始化 ,分别是:分类 + addMethod + addPro + addProtocol
      本类的数据加载-1
    • p rwe
    • p *$0 , 此时的rwe中的list_array_tt是空的
      本类的数据加载-2
  • 继续往下执行到if (list) {断住

    • p list
    • p *$2 ,此时的listLGPerson本类的方法列表
      本类的数据加载-3
  • attachLists方法中的if (hasArray()) {处设置断点,并运行断住,继续往下执行,会走到 else-if流程,即0对1 -- LGPerson本类的方法列表的添加 会走 0对1流程

    本类的数据加载-4

    • p addedLists ,此时是一个list指针的地址,给了mlists的第一个元素, 类型是method_list_t *const *
      本类的数据加载-5
    • p addedLists[0]
    • p *$5
      本类的数据加载-6
    • p addedLists[1]
    • p *$7 ,也会有值,主要是因为内存是连续的,访问的是别人的
      本类的数据加载-7

总结 :所以 0对1是一种一维赋值,函数路径为:map_images -> _read_images -> readClass -> realizeClassWithoutSwift -> methodizeClass -> prepareMethodLists -> fixupMethodList -> attachToClass -> load_categories_nolock -> attachCategories -> extAllocIfNeeded -> extAlloc -> attachLists

rwe -- LGA分类数据加载【重点!!!】

  • 继续执行一步,打印list

    • p list ,此时的list是method_list_t结构
      LGA分类数据加载-1
  • 接上面,继续往下执行,走到method_list_t *mlist = entry.cat->methodsForMeta(isMeta);

    • p mlist
    • p *$10 ,此时的mlist是 分类LGA 的


      LGA分类数据加载-2
  • if (mcount > 0) {部分加断点,继续往下执行,并断住

    LGA分类数据加载-3

  • 往下执行一步,此时的mlists集合的集合

    LGA分类数据加载-4

  • 其中mlists + ATTACH_BUFSIZ - mcount内存平移

    • p mlists + ATTACH_BUFSIZ - mcount , 因为mcount = 1, ATTACH_BUFSIZ = 64,从首位平移到63位,即最后一个元素
    • p *$14
      LGA分类数据加载-5
    • p *$15 ,mlists最后一个元素的类容为 本类的方法列表
      LGA分类数据加载-6
  • 进入attachLists方法, 在if (hasArray()) {处加断点,继续执行,由于已经有了一个list,所以 会走到 1对多的流程

    LGA分类数据加载-7

  • 执行到最后,输出当前的array 即 p array()

    LGA分类数据加载-8

    这个list_array_tt<method_t, method_list_t>表示 array中会放很多的 method_list_t,method_list_t中会放很多method_t

总结:如果本类只有一个分类,则会走到情况3,即1对多的情况

rwe -- LGB分类数据加载【重点!!!】

如果再加一个分类LGB,走到第三种情况,即多对多

  • 再次走到attachCategories -- if (mcount > 0) {,进入attachLists,走到 多对多的情况
    LGB分类数据加载-1
  • 查看当前 array 的形式 即 p array()
    LGB分类数据加载-2
    • p $25[0]
    • p $25[1]
    • p $25[2]
    • p $26.lists[0]
    • p *$29 ,第一个里面存储的LGB的方法列表
      LGB分类数据加载-3

其输出的顺序是

总结

综上所述,attachLists方法主要是将类 和 分类 的数据加载到rwe

  • 首先加载本类的data数据,此时的rwe没有数据为空,走0对1流程

  • 加入一个分类时,此时的rwe仅有一个list,即本类的list,走1对多流程

  • 再加入一个分类时,此时的rwe中有两个list,即本类+分类的list,走多对多流程

如下图所示


attachLists的三种流程

懒加载类 和 非懒加载类

  • 在验证方法排序的基础上,继续在rwe加断点,此时为NULL

    调试rwe-1

  • 继续往下一步步执行,rwe仍为NULL,不会走if里面的流程

    调试rwe-2

在这里,尽管方法处理完毕,但是并没有从rw中存储到rwe中,那么问题来了,到目前为止,从data -> ro -> rw -> 看到了rwe,即realizeClassWithoutSwift(ro、rw操作)-> methodizeClass,但是并没有走if里面的流程,为什么?

究其根本原因是_read_images方法中的第九步 实现非懒加载类,那么我们是如何将 懒加载类 变成 非懒加载类的呢?

主要是在运行objc源码前,我们在LGPerson中实现了一个+load方法,反之,如果去掉+load方法,是懒加载类,不会走到第九步的for循环

所以,综上所述,懒加载类非懒加载类区别 就是 是否实现了+load方法

  • 实现+load,则是非懒加载类
  • 反之,是懒加载类

为什么实现load方法就会变成非懒加载类?

  • 主要是因为load提前加载load方法会在load_images 调用,前提类存在

懒加载类在什么时候加载

  • 调用方法的时候加载

调试验证 懒加载类加载的时机

下面通过代码调试来验证

  • 注释掉LGPerson中的+load方法,并在main中实例化person处加一个断点

    加断点

  • _read_images的第九步 for循环加一个断点 -- readClass -- main的断点处

  • 继续往下执行,走到 realizeClassWithoutSwift -- methodizeClass -- prepareMethodLists -- [person kc_instanceMethod1];

    调试懒加载类

堆栈信息验证

也可以通过bt 堆栈信息查看,方法为什么能来?其本质是因为 走到realizeClassWithoutSwift,其本质是调用alloc,即消息的发送

bt验证懒加载类数据加载时机

所以懒加载类非懒加载类数据加载时机如下图所示

懒加载类和非懒加载类

总结

  • readClass主要是读取类,即此时的类仅有地址+名称,还没有data数据
  • realizeClassWithoutSwift主要是实现类,即将类的data数据读取到内存中
    • methodizeClass方法中实现类中方法(协议等)的`序列化

    • attachCategories方法中实现类以及分类的数据加载

综上所述,类从Mach-O加载到内存的流程图如下所示

类加载流程